

MATHEMATICS LEARNING AREA YEAR 12 MATHEMATICS METHODS UNIT 3 Assessment type: Response TASK 3⁻ TEST 2 CALCULATOR- ASSUMED

Student Name: **ANSWER KEY**

TIME ALLOWED FOR THIS PAPER

Suggested: Reading and Working time for Cal Assumed paper:

30 minutes in class under test conditions

MATERIAL REQUIRED / RECOMMENDED FOR THIS PAPER

TO BE PROVIDED BY THE SUPERVISOR Question/answer booklet

TO BE PROVIDED BY THE CANDIDATE

Standard Items: pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing templates, Calculator

IMPORTANT NOTE TO CANDIDATES

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be attempted	Suggested working time (minutes)	Marks available
Calculator Assumed	4	4	30	33
			Marks available:	/33
			Task Weighting	7% for the pair of units

Instructions to candidates

1

Question 1

A particle's velocity at t seconds, is $v(t) = 8 \cos 2t$, and is travelling for 4π seconds.

a) Find the distance travelled by the particle for 4π seconds.

 $Distance = \int_{0}^{4\pi} |8\cos 2t| dt$ (by using CAS) $\therefore d = 64 m$ (1 mark)

Solution

If the particle goes through the origin initially *O*.

b) Prove that $a(t) = -k^2 x(t)$.

Solution $\int v(t)dt = x(t)$ $x(t) = 4\sin 2t + c \rightarrow x(0) = 0$ $\therefore x(t) = 4\sin 2t$ (1 mark) $v'(t) = a(t) \rightarrow a(t) = -16\sin 2t$ (1 mark) $a(t) = -(2)^2 4 \sin 2t$ $\therefore a(t) = -(2)^2 x(t)$ Hence, the acceleration function is in the form of $a(t) = -k^2 x(t)$. (1 mark)

c) Find the exact speed of the particle at $t = \frac{11\pi}{12}$

2

(3 marks)

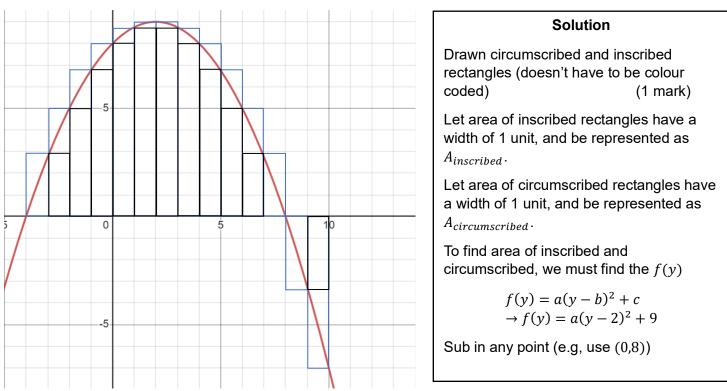
(1 mark)

Solution $\left| v\left(\frac{11\pi}{12}\right) \right| \rightarrow \left| 8\cos 2\left(\frac{11\pi}{12}\right) \right| = 4\sqrt{3}$ $\therefore \left| v\left(\frac{11\pi}{12}\right) \right| = 4\sqrt{3} \, ms^{-1}$ (1 mark)

d) Find the change of displacement when the speed of the particle is $4 ms^{-1}$ for the first $\frac{\pi}{2}$ seconds (5 marks)

Solution	Solution		
v(t) = 4 $\rightarrow v(t) = 4$ and $v(t) = -$	(1 mark) -4 (1 mark)		
$8\cos 2t = 4 \mid 0 \le t \le \frac{\pi}{2}$			
0	$\therefore t = \frac{\pi}{6} $ (1 mark)		
$8\cos 2t = -4 \mid 0 \le t \le$	$\frac{\pi}{2}$		
$\therefore t = \frac{\pi}{3}$	(1 mark)		
Change of d	Change of displacement		
$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} v(t) dt \to \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} 8\cos 2t \ dt =$	= 0 (1 mark)		
∴ Hence, the change c	\therefore Hence, the change of displacement is $0m$.		

A function x = f(y) is shown below.



It is given that $p < \int_{-4}^{10} |f(y)| dy < q$. By finding p and q, interpret what this statement $(p < \int_{-4}^{10} |f(y)| dy < q)$ means by further on finding $\int_{-4}^{10} |f(y)| dy$.

Solution

$$\begin{split} 8 &= a(-2)^2 + 9 \\ \therefore a &= -\frac{1}{4} \\ f(y) &= -\frac{1}{4}(y-2)^2 + 9 \qquad (1 \text{ mark}) \\ A_{inscribed} &= (1) \left[\left(\left(f(-3) + f(-2) + f(1) + f(0) + f(1) \right) \times 2 \right) + |f(9)| \right] \\ \therefore A_{inscribed} &= 65.75 \text{ units}^2 \qquad (1 \text{ mark}) \\ A_{circumscribed} &= (1) \left[\left(\left(f(-3) + f(-2) + f(-1) + f(0) + f(1) + f(2) \right) \times 2 \right) + |f(9)| + |f(10)| \right] \\ \therefore A_{circumscribed} &= 90.75 \text{ units}^2 \qquad (1 \text{ mark}) \\ \int_{-4}^{10} \left| -\frac{1}{4}(y-2)^2 + 9 \right| dy = 78.\overline{66} \qquad (1 \text{ mark}) \\ \text{Hence, } p &= 65.75 \text{ units}^2 \text{ and } q = 90.75 \text{ units}^2 \\ \text{Furthermore, the actual area, } \int_{-4}^{10} |f(y)| dy, \text{ lies within the range of } 65.75 < \int_{-4}^{10} |f(y)| dy < 90.75 \\ \text{ as the } A_{inscribed} \text{ and } A_{circumscribed} \text{ are estimated values of lower and upper.} \\ &\qquad (1 \text{ mark}) \end{split}$$

(6 marks)

(9 marks)

Question 3

Given the following marginal analysis data

$$C'(x) = 3\cos x \sin^2 x + 5e^{3x}, \qquad C(0) = 0$$

$$R'(x) = 6\cos x \sin^2 x + e^{3x} + 2x(10x^2 - 3)^3 + \frac{1}{\cos^2 x}, \qquad R(0) = 0$$

Find C(x) and R(x), with full working out.

Solution

$$\int C'(x)dx = C(x)$$
 (1 mark)

$$\rightarrow \int 3\cos x \sin^2 x + 5e^{3x} dx$$

$$\rightarrow 3 \int \cos x \sin^2 x dx + \frac{5}{3} \int 3e^{3x} dx$$
 (1 mark)

$$\rightarrow C(x) = \sin^3 x + \frac{5}{3}e^{3x} + c$$
 $C(0) = 0$

$$\rightarrow C(0) = \frac{5}{3} + c \rightarrow c = -\frac{5}{3}$$

$$\therefore C(x) = \sin^3 x + \frac{5}{3}e^{3x} - \frac{5}{3}$$
 (1 mark)

$$\int R'(x)dx = R(x) \qquad (1 \text{ mark})$$

$$\rightarrow \int 6\cos x \sin^2 x + e^{3x} + 2x(10x^2 - 3)^3 + \frac{1}{\cos^2 x} dx$$

$$\rightarrow 6\int \cos x \sin^2 x \, dx + \frac{1}{3} \int 3e^{3x} \, dx + \frac{1}{10} \int 20x(10x^2 - 3)^3 \, dx + \tan x + c \qquad (1 \text{ mark})$$

$$\rightarrow R(x) = 2\sin^3 x + \frac{1}{3}e^{3x} + \frac{1}{40}(10x^2 - 3)^4 + \tan x + c \qquad R(0) = 0$$

$$\rightarrow R(0) = \frac{1}{3} + \frac{81}{40} + c \rightarrow c = -\frac{283}{120}$$

$$\therefore R(x) = 2\sin^3 x + \frac{1}{3}e^{3x} + \frac{1}{40}(10x^2 - 3)^4 + \tan x - \frac{283}{120} \qquad (1 \text{ mark})$$
Hence, $C(x) = \sin^3 x + \frac{5}{3}e^{3x} - \frac{5}{3}$ and $R(x) = 2\sin^3 x + \frac{1}{3}e^{3x} + \frac{1}{40}(10x^2 - 3)^4 + \tan x - \frac{283}{120}$

By finding the cost and revenue function..

a) Find the total cost of producing 10 items

(1 mark)

Solution	
$C(x) = \sin^3 x + \frac{5}{3}e^{3x} - \frac{5}{3}$	
$\therefore C(10) = \$1.78 \times 10^5$	(1 mark)

(6 marks)

Solution

P(x) = R(x) - C(x)(1 mark) $\rightarrow P(x) = \left(2\sin^3 x + \frac{1}{3}e^{3x} + \frac{1}{40}(10x^2 - 3)^4 + \tan x - \frac{283}{120}\right) - \left(\sin^3 x + \frac{5}{3}e^{3x} - \frac{5}{3}\right)$ $\Rightarrow P(x) = \sin^3 x - \frac{4}{3}e^{3x} + \frac{1}{40}(10x^2 - 3)^4 + \tan x - \frac{83}{120}$ (1 mark) Average profit $P_{avg} = \frac{P(10)}{10}$ $\therefore P_{avg} = \$ - 1.422 \times 10^{13}$ (1 mark)

Question 4

The fundamental theorem of calculus is derived by a long algebraic method. To simply explain this, they say that $A = \lim_{n \to \infty} (sum \ of \ areas \ of \ rectangular \ strips)$, depending on the function. This means the exact area A of the region under the curve, which then simplifies to...

$$A = \lim_{\delta x \to 0} \sum_{x=0}^{x=n} f(x) \, \delta x$$

By interpreting on the information given, what does the expression above actually mean. Express your answer in a basic expression. (3 marks)

Solution
If there are *n* amount of rectangles created under a curve, and if there width
$$\delta x$$
, is approaching to 0
 $(\delta x \to 0)$, then the sum of all of them is the estimated area under the curve between $x = 0$ and $x = n$.
(1 mark)
Hence, if it's the area under a curve then we can say that

$$A = \lim_{\delta x \to 0} \sum_{x=0}^{x=n} f(x) \, \delta x \approx \int_{0}^{n} f(x) \, dx$$
(1 mark)
 $\therefore A = \int_{0}^{n} f(x) \, dx$
Hence, the expression above means the area under a curve, which is the integral with limits from $x = 0$
and $x = n$
(1 mark)

(3 marks)

(8 marks)

7

By this formula of A, they have deducted the formula for the fundamental theorem of calclus. which is...

$$\frac{d}{dx}(\int_{a}^{x} f(t) dt) = f(x)$$

Hence, find f(x).

a)
$$\frac{d}{dx} \left(\int_{\pi}^{x} \frac{\sqrt[2]{2t^2 - 4t + 3}}{9t - 3} dt \right)$$

Solution By using the fundamental theorem of calculus $\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$ $\frac{d}{dx} \left(\int_{\pi}^{x} \frac{\sqrt{2t^{2} - 4t + 3}}{9t - 3} dt \right) = \frac{\sqrt[2]{2x^{2} - 4x + 3}}{9x - 3}$ $\therefore f(x) = \frac{\sqrt[2]{2x^{2} - 4x + 3}}{9x - 3}$ (1 mark)

b)
$$\frac{d}{dx} \left(\int_{3!}^{x} \frac{1}{2} \left(\frac{\tan(t) + e^{\frac{1}{2}t} - 5(3t^2 - 2t)^9 - 10}{\sqrt{4t^2 + \sin(t) + 10}} \right) dt$$

(2 marks)

By using the fundamental theorem of calculus

Solution

$$\frac{d}{dx} \left(\int_{a}^{x} f(t) \, dt \right) = f(x)$$

$$\frac{d}{dx} \left(\int_{3!}^{x} \frac{1}{2} \left(\frac{\tan(t) + e^{\frac{1}{2}t} - 5(3t^2 - 2t)^9 - 10}{\sqrt{4t^2 + \sin(t) + 10}} \right) dt$$

$$= \frac{1}{2} \left(\frac{\tan(x) + e^{\frac{1}{2}x} - 5(3x^2 - 2x)^9 - 10}{\sqrt{4x^2 + \sin(x) + 10}} \right)$$

$$\therefore f(x) = \frac{\tan(t) + e^{\frac{1}{2}t} - 5(3t^2 - 2t)^9 - 10}{2\sqrt{4t^2 + \sin(t) + 10}}$$
(1 mark)

Why doesn't the expressions below not work for the fundamental theorem of calculus?

$$\frac{d}{dx}\left(\int_{3}^{x^{2}}\left(\frac{t}{t+1}\right)dt \quad and \quad \frac{d}{dx}\left(\int_{1}^{x}\left(\frac{\sqrt{2t-4}}{t+1}\right)dt\right)$$

Hence, evaluate the real expression from the two.

Solution

$$\frac{d}{dx} \left(\int_{1}^{x} \left(\frac{\sqrt{2t-4}}{t+1} \right) dt \text{ this expression doesn't work, as it's undefined (Evaluated by using CAS)} (1 mark)$$

$$\int_{1}^{x} \left(\frac{\sqrt{2t-4}}{t+1} \right) dt = \left[-2\sqrt{6} \tan^{-1} \left(\frac{\sqrt{3t-6}}{3} \right) + 2\sqrt{2t-4} \right]_{1}^{x}$$

$$\rightarrow \left(-2\sqrt{6} \tan^{-1} \left(\frac{\sqrt{3(x)-6}}{3} \right) + 2\sqrt{2(x)-4} \right) - \left(-2\sqrt{6} \tan^{-1} \left(\frac{\sqrt{3(1)-6}}{3} \right) + 2\sqrt{2(1)-4} \right)$$
Hence, by solving the integral by the lower limit specifically, it shows the integral is undefined.

$$\frac{d}{dx} \left(\int_{3}^{x^{2}} \left(\frac{t}{t+1} \right) dt = 2x \left(\frac{x}{x+1} \right) = \frac{2x^{2}}{x+1}$$
(Can be done by using CAS)

$$\therefore f(x) = \frac{2x^{2}}{x+1}$$
(1 mark)

END OF CALCULATOR-ASSUMED

(2 marks)

Additional working space

Question number: _____